Inventories, Markups and Real Rigidities

Oleksiy Kryvtsov

Virgiliu Midrigan

Bank of Canada

New York University

New Keynesian Business Cycle Models

- Predictions sensitive to dynamics of costs
 - Real marginal cost volatile: short-lived effect of ΔM
 - Chari-Kehoe-McGrattan

- Real marginal cost sticky: long-lived effects of ΔM
 - Woodford, Christiano-Eichenbaum-Evans, Smets-Wouters

Our Question:

- 1. How does real marginal cost respond to ΔM ?
 - How do markups respond to ΔM ?

- **2.** What accounts for slow response P to M?
 - $P = \text{markup} \times \text{cost}$
 - (Countercyclical) variation markups?
 - Sticky costs?

Recent findings

- Consensus in recent work:
 - ullet Real effects of M mostly due to sticky costs
 - E.g., Christiano, Eichenbaum, Evans (2005)
 - Consumers prices flexible, wages/producer prices sticky

- Difficult map wages/producer prices into marginal cost
 - Statements about marginal cost: quantities

Our approach

- Study data on inventories
- Idea: accumulate inventories if costs low after $\Delta M > 0$

• Price = markup \times marginal valuation of inventory:

$$P = \text{markup} \times V'(inv)$$

• Buy inventories to equate marginal valuation to cost:

$$V'(inv) = cost$$

• cost includes multiplier on quantity constraints etc.

Our findings

• Data: inventories \approx constant over cycle

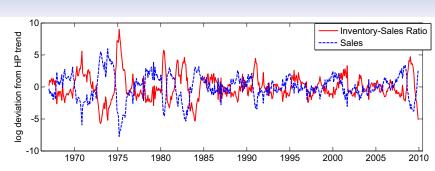
- Model: need strongly countercyclical markups to account data
 - Countercyclical markup variation accounts up to 80 % real effects of ΔM

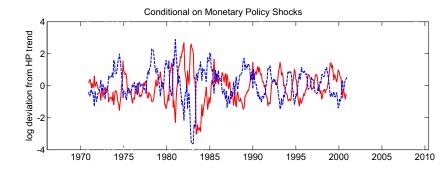
• Bils-Kahn (2000), Khan and Thomas (2007)

Data

- Bureau of Economic Analysis (NIPA), monthly
 - Sales, Inventories
 - Manufacturing and Trade
 - Retail

- All real
 - Unconditional (HP-filtered)
 - Conditional on M shocks





ullet Statistics conditional on CEE M shocks. Similar unconditional.

	Retail	
$\frac{\rho(\ln IS_t, \ln S_t)}{\sigma(\ln IS_t)/\sigma(\ln S_t)}$	-0.70 0.96	-0.58 1.43
$arepsilon_{IS,S} \ arepsilon_{I,S}$	-0.67 0.33	-0.83 0.17
$\sigma(S + \Delta I)/\sigma(S)$	1.10	1.15

• Sales up $1\% \Rightarrow$ inventories up only 0.33%

Model Overview

1. Consumers

- Organized unions. Change wages every 12 months (Calvo).
- Own capital. Rent to manufacturers. Work.
- Cash in advance: $Pc \leq M$

- 2. Final good firms. Competitive.
 - Assemble final good from continuum intermediate goods
 - Good-specific productivity shocks
- **3.** Intermediate good firms. Monopolistically competitive.
 - Can store goods. Depreciate at δ_z .
 - Produce using capital and labor
 - ullet Choose p and y before learn uncertain demand.

Intermediate good firms

Technology

$$y_i\left(s^t\right) = \left(l_i\left(s^t\right)^{\alpha} k_i\left(s^t\right)^{1-\alpha}\right)^{\gamma},$$

Marginal cost:

$$\Omega\left(s^{t}\right)y_{i}\left(s^{t}\right)^{\frac{1}{\gamma}-1}, \qquad \Omega\left(s^{t}\right)=\chi W\left(s^{t}\right)^{\alpha}R\left(s^{t}\right)^{1-\alpha}$$

Intermediate good firms. Flexible prices

- End of period inventories: $m_i(s^{t-1})$
- Beginning of period inventories: $z_i(s^t) = m_i(s^{t-1}) + y_i(s^t)$
- Friction: choose $y_i(s^t)$, $P_i(s^t)$ before learn $v_i(s^t)$
- Sales:

$$q_{i}\left(s^{t}\right) = \min\left(v_{i}\left(s^{t}\right)\left(\frac{P_{i}\left(s^{t}\right)}{P\left(s^{t}\right)}\right)^{-\theta}q\left(s^{t}\right), \ z_{i}\left(s^{t}\right)\right)$$

• Inventories:

$$m_i\left(s^t\right) = \left(1 - \delta_z\right)\left(z_i\left(s^t\right) - q_i\left(s^t\right)\right)$$

Decision Rules with constant returns, $\gamma = 1$

$$\max_{P_{i}\left(s^{t}\right),\ z_{i}\left(s^{t}\right)}\left(P_{i}\left(s^{t}\right)-\Omega'\left(s^{t}\right)\right)R\left[P_{i}\left(s^{t}\right),z_{i}\left(s^{t}\right)\right]-\left(\Omega\left(s^{t}\right)-\Omega'\left(s^{t}\right)\right)z_{i}\left(s^{t}\right)$$

• $R[P_i(s^t), z_i(s^t)]$: expected sales

• $\Omega'(s^t) = (1 - \delta_z) \int_{s^{t+1}} Q(s^{t+1}|s^t) \Omega(s^{t+1}) ds^{t+1}$:

marginal valuation inventories

Inventory Rules with constant returns, $\gamma = 1$

• Let
$$v_i^*\left(s^t\right) = \frac{z_i\left(s^t\right)}{\left(\frac{P_i\left(s^t\right)}{P\left(s^t\right)}\right)^{-\theta}q\left(s^t\right)}, \qquad r_i\left(s^t\right) = \frac{\Omega'\left(s^t\right)}{\Omega(s^t)}$$

• Inventory decision:

$$1 - \Phi\left(\log v_i^*\left(s^t\right)\right) = \frac{1 - r_i\left(s^t\right)}{P_i\left(s^t\right) / \Omega\left(s^t\right) - r_i\left(s^t\right)}$$

• Inventories more sensitive to r_i than markups:

$$\hat{v}_{i}^{*}\left(s^{t}\right)=\xi\left[\left(1-\bar{\Phi}\right)\bar{b}\left[\hat{P}_{i}\left(s^{t}\right)-\hat{\Omega}\left(s^{t}\right)\right]+\beta\left(1-\delta_{z}\right)\bar{\Phi}\hat{r}_{i}\left(s^{t}\right)\right]$$

• one-to-one mapping $v_i(s^t)$ and $m_i(s^t)$ (data)

Parametrization

- Standard.
- Two key inventory parameters
 - Inventory depreciation, $\delta_z = 0.91\%$
 - Std. dev. demand shocks, $\sigma_v = 0.63$
- Choosen to match:
 - I/S ratio = 1.4 months
 - Frequency stockouts 5% (Bils 04)
 - δ_z similar direct measures inventory carrying costs

Flexible prices (constant markups)

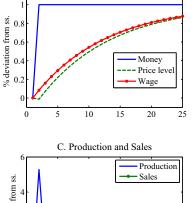
• Study response to money growth shocks:

$$\ln M_t / M_{t-1} = \varepsilon(s^t)$$

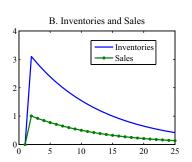
- Three variations:
 - Constant returns to labor. $(\gamma = \alpha = 1)$
 - Firm-level decreasing returns. No K ($\gamma = 2/3, \alpha = 1$)
 - Firm-level constant returns. Capital ($\gamma = 1, \alpha = 2/3$)
- Return to holding inventories (log-preferences):

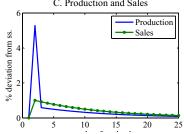
$$r_{i,t} = \beta \left(1 - \delta_z \right) E_t \frac{1}{\exp\left(\varepsilon_{t+1}\right)} \left(\frac{W_{t+1}}{W_t} \right)^{\alpha} \left(\frac{R_{t+1}}{R_t} \right)^{1-\alpha} \left(\frac{y_{i,t+1}}{y_{i,t}} \right)^{\frac{1}{\gamma}-1}$$

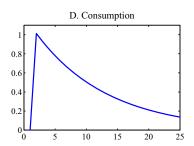
Constant returns to labor, $\alpha = \gamma = 1$



A. Nominal Variables







Economy with constant markups

	$\epsilon_{I,S}$	$\sigma(Y)/\sigma(S)$
Data	0.33	1.10
Constant returns labor	3.1	3.1
Firm DRS	2.2	1.7
Capital	1.4	1.4
Firm DRS	2.2	1.7

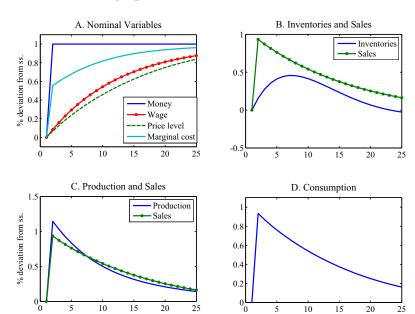
Constant markups: cannot account inventory data

Countercyclical markups (prices Δ every 8 months)

$\epsilon_{I,S}$	$\sigma(Y)/\sigma(S)$
0.33	1.10
2.7	2.9
0.5	1.14
0.11	1.07
	0.33 2.7 0.5

Countercyclical markups: can account inventory data

Sticky prices and firm DRS



Measure role of markups

• Cash-in-advance:

$$\ln(c_t) = \ln(M_t) - \ln(P_t) = \underbrace{\ln(M_t) - \ln(\Omega_t)}_{cost\ term} + \underbrace{\ln(\Omega_t) - \ln(P_t)}_{markup\ term}$$

- Decompose role of cost and markup variation
 - Vary share of K to match inventory data exactly
 - Also study economies with IES = 0.5 and Taylor rule

Measure role of markups

	$\epsilon_{I,S}$	Markup contribution
Data	0.33	??
Original	0.33	0.53
IES = 0.5	0.33	0.80
Taylor rule	0.33	0.80

Countercyclical markups account 80% real effects of M shocks