Inflation expectation formation. Laboratory experiment in high and low inflation environment

DARIA MININA, TINBERGEN INSTITUTE

Motivation

Inflation expectations are one of the main determinants of inflation:

Theory: New Keynesian Phillips curve

Empirical studies: Galí, Gertler and López-Salido (2001), Taylor (2000)

Policy: efforts of central banks in measuring inflation expectations

But inflation expectations are unobservable!

Survey or experiment?

Methods

Analyze survey data	Conduct an experiment
+Panel data are available for many countries	+Control the information set that subjects have
+Data for long periods of time	+Control the incentives
-No incentive to truthfully report the expectations	+Control the shocks that hit the experimental economy
-Decision in real life situations may be based on different expectations than stated in the survey	-Small sample => internal validity issues
-Many shocks may hit the economy at the same time, so it is hard to disentangle the effects of various shocks	-External validity issues (artificial setting, etc.)
-Data on expectations from many developing countries is either not available or not reliable	

Main idea

Research questions:

- ➤ How are individual inflation expectations formed and adapted?
- ➤ How are aggregate expectations formed?

Hypotheses:

- The majority of people do not switch between forecasting rules. Instead, they use adaptive learning model $(\pi \downarrow t \uparrow e = \pi \downarrow t 1 \uparrow e + \lambda (\pi \downarrow t 1 \pi \downarrow t 1 \uparrow e))$ and change updating parameter in response to chan in the environment.
- Reaction to changes in macroeconomic parameters will be bigger in high inflation environment because underprediction inflation in unstable environment is more costly than overpredicting it.

Method: learning-to-forecast experiment with 2 treatments: high inflation environment (tested on students from Belarus) and low inflation environment (researched on UVA students)

Literature

pothesis 1:

glewski and Wachtel (1981) adaptive expectations are the best fit to the survey data, heterogeneity in adapti Trameter;

fajfar and Santoro (2010) – adaptive learning fits the data to the right of the median in the Michigan survey da etersen (2014) - adaptive expectations are the best fit to the data.

pothesis 2:

alati et al. (2009) after the Great Recession sensitivity of expectations to macroeconomic information increas fajfar and Santoro (2010) agents update information more often when inflation is high and volatile; fajfar and Zakelj (2016) higher updating coefficients in treatments with higher inflation variability.

ntribution:

effects of environment on individual and aggregate expectation formation

the new rule of change in the parameter of the adaptive learning model (asymmetric costs of underpredicting flation => higher updating parameter in uncertain environment)

Low and high inflation environments

rsistent expectations of high inflation currency valuation, high inflation

therlands: low and stable inflation

low inflation expectations

Experimental design

- Groups of 5, each representing a separate experimental economy, constant group composition.
- Task: forecast inflation in the next period based on information up to previous period:

"During the next period, what do you expect inflation to be (negative value means decrease in prices, positive value refers to increase in prices and 0 denotes no change in prices)?"

- \geq In period t forecast inflation in period t+1 based on:
 - √ Subject's previous forecasts;
 - ✓ Data on inflation, GDP growth and interest rate up to period t-1; in period 1 subjects are given an interval of possible values of inflation forecast [-5;15].
- Subjects' forecasts have a feedback on the experimental economy.

Experimental timeline

Period 1

piects forecast inflation beriod 2 without any ues of inflation, GDP wth and interest rate ssible values [-5;15]) Inflation, GDP growth and interest rate data for period 1 are generated using forecasts

Period 2

Subjects forecast inflation in period 3 based the values of inflation, GDP growth, interest rate from period 1.

Inflation, GDP growth and interest rate data for period 2 are generated using forecasts

30 periods

8 of 10

Remaining time [sec]: 60

During the next period, what do you expect inflation to be (negative value means decrease in prices, positive value refers to increase in prices and 0 denotes no change in prices)?

OK

Actual

Your prediction

Period	GDP growth	Inflation	Interest rate	Inflation forecasts	Your profit	Accumulated profit
1	2.7	3.4	6.0	0.00	0.00	0.0
2	4.0	6.1	7.5	5.00	0.00	0.0
3	4.5	5.0	7.5	6.00	29.09	29.1
4	3.9	3.0	6.0	6.00	5.06	34.1
5	3.0	4.0	4.5	5.00	30.27	64.4
6	4.6	4.5	4.5	4.00	48.53	112.9
7	4.0	5.6	6.0	4.00	19.21	132.1

The model

he experimental economy is described by the following model:

$$y \downarrow t = E \downarrow t \uparrow * y \downarrow t + 1 - 0.164 (i \downarrow t - E \downarrow t \uparrow * \pi \downarrow t + 1) + \varepsilon \downarrow t$$

$$\pi \downarrow t = 0.3 y \downarrow t + 0.7 E \downarrow t \uparrow * \pi \downarrow t + 1 + u \downarrow t$$

$$i \downarrow t = 1.5 (E \downarrow t \uparrow * \pi \downarrow t + 1 - \pi) + \pi$$

$$\varepsilon \downarrow t = 0.6 \varepsilon \downarrow t - 1 + \varepsilon \downarrow t$$

$$u \downarrow t = 0.6 u \downarrow t - 1 + u \downarrow t$$

 \sqrt{t} - GDP gap, $\pi \sqrt{t}$ - inflation, $i \sqrt{t}$ - interest rate, $E \sqrt{t} \uparrow * y \sqrt{t} + 1$ - expected output gap (assumed to be expected output gap (assumed to be expected output gap) $\Rightarrow E \sqrt{t} \uparrow * y \sqrt{t} + 1 = y \sqrt{t} - 1$), $E \sqrt{t} \uparrow * \pi \sqrt{t} + 1$ - expected inflation, π - inflation of the fire π - π -

n period 15 each experimental economy is hit by a supply shock of magnitude 5.

Questionnaire

- general questions (sex, age, country, monthly expenditures, faculty)
- strategy used when forecasting inflation;
- whether they changed strategy during the experiment;
- was central bank successful in stabilizing inflation;
- > questions to assess general optimism/pessimism about country's economic situation and personal economic situation.

Payoff

- > Payment in cash based on the forecasting accuracy.
- > Payoff in each period is found with the following formula (Adam, 2007):

$$points \downarrow t = \max \square \{100/1 + error \downarrow t -20,0\}$$

> Forecasting accuracy: $error \downarrow t = |\pi \downarrow t - \pi \downarrow t \uparrow f|$

Payoff for selected values of forecast error

	fe\tîk		0.5		1.5		2.5	3	3.5	≥4	
		80	46.7	30	20	13.3	8.6	5	2.2	0	
Payoffs in each	period	were	accu	mula	ted: ˌ	payo	$ff=\sum_{i=1}^{n}$	t = 31	30 <i>‱</i> į	points	$s \downarrow t$
> 2 trial periods.											

> Exchange rate – 80 points/euro, 65 points/ruble plus 7 euro (5 rubles) participation fee.

Additional information

Sample: 2 groups of 10 people, first - students from the University of Amsterdam second - students from the Belarusian State University.

Sessions: 2 (in Amsterdam and in Belarus), on average 40 minutes.

Instructions: for students from UVA in English, for students from BSU in Russian.

Average payoff: 10 rubles, 14 euro.

Software: Z-TREE.

Data analysis

- 1. Test experimental data for matching the rational expectations hypothesis:
- \checkmark unbiasedness: $\pi \downarrow t = \alpha + \beta \pi \downarrow t \uparrow e + \varepsilon \downarrow t$, if $\alpha = 0, \beta = 1 \Rightarrow$ unbiased
- ✓ efficiency:
 - strong form: $\pi \downarrow t \pi \downarrow t \uparrow e = \alpha + \beta \pi \downarrow t 1 + \gamma y \downarrow t 1 + \delta i \downarrow t 1 + u \downarrow t$,
 - weak form: $\pi \downarrow t \pi \downarrow t \uparrow e = \alpha + \beta \pi \downarrow t 1 + u \downarrow t$?
- 2. Fit the data to
 - linear prediction rule: $\pi \downarrow j, t+1$ $\hat{l}e = c + \sum i = 0$ $\hat{l} = 0$ $\hat{l$
 - trend extrapolation rule: $\pi \downarrow j, t+1 \uparrow e = \beta \downarrow 0 + \beta \downarrow 1 \pi \downarrow t-2 + \beta \downarrow 2 (\pi \downarrow t-2 \pi \downarrow t-3) + \mu \downarrow t$
 - adaptive learning rule: $\pi \downarrow t \uparrow e = \pi \downarrow t 1 \uparrow e + \lambda (\pi \downarrow t 1 \pi \downarrow t 1 \uparrow e)$
- Compare coefficients for different individuals and between groups, conduct statistical test to find out whether these coefficients are significantly different;
- 4. If $\alpha \downarrow i \uparrow BSU$, $\beta \downarrow i \uparrow BSU$, $\gamma \downarrow i \uparrow BSU > \alpha \downarrow i \uparrow UVA$, $\beta \downarrow i \uparrow UVA$, $\gamma \downarrow i \uparrow UVA \Rightarrow$ evidence supporting the 2nd hypothesis

Expected findings

- The majority of the individual data from the experiment was expected to fit adaptive learning rule.
- \triangleright Agents were expected to be heterogeneous not in terms of forecasting rules but in terms of updating parameter (λ).
- People from high-inflation environment were expected to adapt to changes in inflation faster than people who are used to low-inflation.

Descriptive statistics

Characteristics	BSU	UVA
age	19.8	21.5
Female/male	8/2	6/4
Education	Bachelors of Corporate Finance	Bachelors and Masters: 9 Economics and Business and 1 Political Science
Country	Belarus	2 Netherlands, Albania, USA, Ukraine, Germany, Latvia, Pakistan, Cuba, Sweden
Participation in experiments in the past	No	?

Group results

Group results. 2

Individual results. BSU

Individual results. UVA

Testing aggregate expectations

- Rational expectations hypothesis
- > Trend extrapolation rule: $\pi \downarrow j, t+1 \uparrow e = \beta \downarrow 0 + \beta \downarrow 1 \pi \downarrow t-2 + \beta \downarrow 2 (\pi \downarrow t-2 \pi \downarrow -3 \downarrow \downarrow \mu \downarrow t$
- Adaptive expectations: $\pi \downarrow t \uparrow e = \beta \downarrow 0 + \beta \downarrow 1 \pi \downarrow t 1 \uparrow e + \beta \downarrow 2 f e + 2 + \epsilon \downarrow t$
- ightharpoonup General linear rule: $\pi \downarrow j, t+1 \uparrow e = \beta \downarrow 0 + \beta \downarrow 1 \pi \downarrow t-1 + \beta \downarrow 2 y \downarrow t-1 + \beta \not i \downarrow t-1 + \mu \downarrow t$

Testing individual expectations

Rational expectations hypothesis

 \nearrow Trend extrapolation rule: $\pi \downarrow j, t+1 \uparrow e = \beta \downarrow 0 + \beta \downarrow 1 \pi \downarrow t-2 + \beta \downarrow 2 (\pi \downarrow t-2 - t-1) + 1$

Hypothesis

- Adaptive expectations: $\pi \downarrow t \uparrow e = \beta \downarrow 0 + \beta \downarrow 1 \pi \downarrow t 1 \uparrow e + \beta \downarrow 2 \neq t 2 + \varepsilon \downarrow t$
- ightharpoonup General linear rule: $\pi \downarrow j, t+1 \uparrow e = \beta \downarrow 0 + \beta \downarrow 1 \pi \downarrow t-1 + \beta \downarrow 2 y \downarrow t-1 + \beta \not i \downarrow t-1 + \mu \downarrow t$
- > After the shock updating parameter increased in BSU treatment but not at the UVA treatment.

Hypothesis 2

Conclusions

1. Hypothesis 1:

- ✓ Adaptive expectations fitted the experimental data better than trend extrapolation and general linear forecasting rule —
- ✓ When divided into 2 subsamples, adaptive expectations fitted the data only after the shock ■

2. Hypothesis 2:

✓ The updating parameter increased after the shock for both Belarus groups but not for the UVA treatment —

Weak points

- small sample (10 people in each session);
- confounding effect of possible previous forecasting experiments of UVA participants;
- different cultural backgrounds of the UVA sample (half of the participants were from countries with relatively unstable inflation);
- limited understanding of such concepts as inflation, GDP growth and interest rate
- sample of only master students (=> younger, with lower income and the share of females higher than on average in the population of Belarus and the Netherlands)

Further research

- larger sample from a balanced demographically subject pool
- > ask subjects to forecast changes in price level, not inflation
- > research the differences inflation perception in high- and low-inflation environment
- research difference in expectation formation between people who have lived in a low-inflation country for a long time but were brought up in high-inflation environment and people who have always lived in a high-inflation country
- > research how the choice of forecasting rules depends on the macroeconomic environment

Thank you for attention